

HVAC Noise & Vibration Control RTU Best Practices

Presented By

Brandon Wallace

Noise & Vibration Control, Inc. 610-863-6300

www.brd-nonoise.com

Characteristics of Sound

- Quantity = Loudness (Intensity)
- Quality = Pitch (Tonal Content)
 - Character (Cyclical Ramping)

Power vs. Pressure PWL vs. SPL

Cause vs. Effect

Watts vs. Temperature

"A" Weighting of Decibels

		Octave Band Center Frequency, Hz							
	31.5	63	125	250	500	1000	2000	4000	8000
A-weighting	-39	-26	-16	-9	-3	0	+1	+1	-1

Correction factors that turn dB into dBA

What Is The Decibel Scale?

The decibel (dB) is:

- a dimensionless unit, the <u>ratio of a measured</u> <u>value (p) to a reference value (ref)</u> on log scale.

-threshold of hearing to a level of extreme danger is 7 orders of magnitude (10,000,000 times that of the lower threshold)

	dB	Actual SPL Reduction	Perceived Volume Reduction		
1	3 dB	50.00%	18.77%		
1 8	6 dB	75.00%	34.02%		
	9 dB	87.50%	46.41%		
•	12 dB	93.75%	56.47%		
	15 dB	96.88%	64.64%		
	18 dB	98.44%	71.28%		
	21 dB	99.22%	76.67%		
- 2	24 dB	99.61%	81.05%		
- 2	27 dB	99.80%	84.61%		
	30 dB	99.90%	87.50%		
	33 dB	99.95%	89.85%		
	36 dB	99.98%	91.75%		
	39 dB	99.99%	93.30%		
-	42 dB	99.99%	94.56%		
-	45 dB	100.00%	95.58%		
-	48 dB	100.00%	96.41%		
	51 dB	10D.00%	97.08%		
	54 dB	100.00%	97.63%		
	57 dB	100.00%	98.08%		
(60 dB	100.00%	98.44%		
. (63 dB	100.00%	98.73%		
- (66 dB	10D.00%	98.97%		
(69 dB	100.00%	99.16%		
- 7	72 dB	10D.00%	99.32%		
7	75 dB	10D.00%	99.45%		
1	78 dB	100.00%	99.55%		
1	B1 dB	100.00%	99.64%		

Fundamentals of HVAC Acoustical Engineering

Best Practices

Acoustical Design

- Answer the 4 questions
- Use 3 to 5 dBA safety factor
- Cursory review on every project; in depth review when warranted
- Assess site ambient noise levels
- Evaluate airborne and structure-borne transmission
- System problems require system solutions

Just Right Acoustics

- Where are we now? Baseline data (standard)
- Where do we need to be? Acceptance Criteria (NC, RC, dB, dBA, etc...)
- What needs to be done to achieve compliance?
- How much will it cost?

Acoustical Tutorial for Rooftop Curb Mounted AHU

Construction Trends

- Less mass in building
- Less space between floors
- Drop ceilings
- Premium for rentable/usable space
- Value Engineering
- Heightened sensitivity of owners/occupants
- ANSI S12.60
- CURB MOUNTED RTUs

Typical Rooftop Unit System Problems

In-Duct Supply Fan Noise

Reverse Flow Fan Noise Into Return Ductwork/Plenum

RTU Base Pan Radiated Noise

Over Cut Deck Openings For Return & Supply Ductwork

Cabinet Radiated Outdoor Noise

Structure-Borne Vibration Into Building Shell

Lightweight Roof Deflection

Duct Breakout Noise

Break In Noise Bypassing Through The Ductwork

- Downstream Fan Attenuation
- Internal RTU Isolation
- Factory Non-Isolation
 Curb
- Deck openings over cut by 4" to 6"
- Ductwork supports tied into wall studs
- No In-curb acoustical treatment
- NC-59/50.1 dBA

- Vibration Isolation Curb
- SA & RA Sound Attenuators
- External Duct Lagging
- Lightweight roof
- Duct drops sealed
- No- In-curb acoustical treatment
- NC 56/55.3 dBA

- Factory Curb
- Compressor
 Grommets
- Solid deck
- OA and horizontal discharge
- NC 47/43.8 dBA

Specification Strategies

Minimize Attenuation Needed

- Optimize RTU configurations to minimize baseline sound output
- Select RTU location over utility or other non-critical space
- Dialogue with architect regarding roof mass

Transmission Paths to Address in the Specification

- In-Duct Fan Noise
- Radiated Noise
- Ductwork Breakout Noise
- Structure-borne Transmission
- Outdoor Noise

RTU Specification Goal

- Predictable performance to meet objective criteria
- Measurable Performance Accountability
- Clear Installation Guidelines for the construction team
- Equipment/System Compatibility

RTU Specification Examples

RTU Specification Features

- Design specification with embedded acoustical performance
- Single source supply of Acoustical materials
- Specify procedure for the HVAC contractor to cut and seal deck openings for SA and RA inside the curb
- Require acoustical material supplier to inspect & certify
- Embed acoustical specification with RTU equipment
- Pre-Assembled construction

In-Curb System

Isolation Curb Kit Assembly

Pre-assembled Construction

The Results

- Performance Improvement of 5 to 10 NC/dBA
- No uptick in cost points

Higher Performance RTU Acoustical Systems are Rarely Needed

Higher Performance Applications

- Entertainment/Theatre Venues
- Libraries/Museums
- K-12/Higher Education

High Performance Design Features

- Plenumized Curbs
- Acoustical panel curb bottom with SA/RA openings offset from the unit opening
- Silencers closer to unit or recessed in the curb
- Eliminates the elbow/transition/offset duct connection to the unit opening

Higher Performance Detail Illustrations

Ductwork Design

 Duct type and sizing need to be consistent with NC target criteria

Ductwork Design

 Duct layout and configuration needs to follow SMACNA and ASHRAE design guidelines

Good/Better/Best Acoustical Design Ductwork Configurations

Guidelines for Minimizing Regenerated Noise In Elbows

Guidelines for Minimizing Regenerated Noise In Takeoffs

Guidelines for Minimizing Regenerated Noise in Duct Tees

Guidelines for Minimizing Regenerated Noise in Transitions and Offsets

Outdoor Noise Treatments

Scroll Compressor Sound Blankets

Coil Intake Acoustical Louvers

Condenser Fan Discharge Stacks

Acoustical Barriers and Screens

Condenser Section Enclosures

